19文档网
当前位置: 一九文档   /  学习文档  /  教学教案  /  正文

《方程》教案热门15篇

时间:2025-06-30 09:33教学教案

《方程》教案

作为一名教师,时常要开展教案准备工作,教案有助于顺利而有效地开展教学活动。那么大家知道正规的教案是怎么写的吗?以下是小编精心整理的《方程》教案,希望对大家有所帮助。

《方程》教案1

一、创设情境。

1.(课件出示)学校买来个9足球,每个a元,买来b个篮球,每个58元。

2.让学生根据出示的信息,提出数学问题。

学生可能提出以下问题

(1)9个足球多少钱?

(2)b个篮球多少钱?

(3)篮球的单价比足球的单价多多少钱?

(4)篮球和足球一共多少钱?

3.学生说出怎样表达这些问题的结果。(教师板书)

4.引导学生观察黑板上的`式子,看一看有什么特点?

二、系统整理

1.提问:我们除了学过用字母标示数量关系外,还学过用字母表示什么?

(让学生以小组为单位,合作整理学过的运算定律和计算公式。)

2.引导学生交流小组整理的结果。教师板书

a+b=b+a v=sh

a+(b+c)=(a+b)+c v=abh

a×b=b×c s=ab

a×(b×c)=(a×b) ×c s=ah

a×(b+c)=a×b+a×c ……

运算定律 计算公式

3.在书写数字与这字母相乘、字母与字母相乘时,应注意什么?

完成84页上做一做的内容。

4.启发学生谈一谈,用字母表示数、表示数量关系有什么作用?

5.在用字母表示数的过程中,我们黙认“x”表示什么样的数?

6.让学生填空:含有未知数的等式叫做( )

求“x”值的过程叫做( )

7.让学生说说解方程的依据是什么?

8.学生解方程并订正结果。

9.通过列方程和解方程,可以解决很多生活中的实际问题。下面请同学们看屏幕。

10.(课件出示)学校组织远足活动。计划每小时走3.8千米,3小时到达目的地。实际2.5小时走完了原定路程,平均每小时走了多少千米?

11.学生独立解决问题,教师课堂巡视,了解学生解决问题情况。

12.班内交流结果。并让学生将解题过程演板。

13.谈一谈在用方程解决问题的过程中,应注意什么?

三、归纳小结。

1.让学生说一说这节课我们对哪项知识做了复习和整理?

2.师:有一部分同学在解题的过程中,不习惯用方程解,老师建议大家,为了更好的与中学接轨,要多尝试用方程解,而且你一定会领悟到方程得简明和方便。

四、实践应用。

1.完成85页练习十五的习题。

2. 填空

(1)小华每分钟跑a米,6分钟跑( )米。

(2)三个连续的偶数,中间一个是M,另外两个是( )和( )。

(3)用字母表示三角形的面积计算公式是( )。如果a=4厘米,b=3厘米,则三角形的面积是( )。

(4)老王今年a岁,小林今年(a-18)岁,再过18年,他们相差( )岁。

(5)一堆煤,有a吨,烧了6天。平均每天烧b吨,还剩( )吨。

《方程》教案2

教学目标:

1、理解等式的基本性质一,并能较熟练地运用它解形如x+a=b的方程。

2、能较为熟练地运用形如x+a=b的方程解决简单的实际问题。

3、初步理解方程的解、解方程的含义,会检验给出的未知数的值是不是某方程的解。

4、培养学生规范书写和自觉检验的好习惯。

教学重点:

1、 对等式的基本性质一的理解和运用。

2、 掌握解形如x+a=b的方程的依据、步骤和书写格式。

3、 能较为熟练地运用形如x+a=b的方程解决简单的实际问题。

教学难点:

1、 掌握解形如x+a=b的方程的依据、步骤和书写格式。

2、 较为熟练地运用形如x+a=b的方程解决简单的实际问题。

教学过程:

教学时由复习方程的意义入手,在出示情境图后提出问题,学生最先想到的是算术方法,此时引导:你能列方程解决这一问题吗?在列出方程600+x=860

后,怎样求x呢?在学生渴望解决这一问题的内在需求的驱使下,展开合作探索活动。

在教学等式的基本性质时,可利用实物演示,通过提问:怎样变换,能使天平仍然保持平衡呢?,以引导学生思考,启发学生把两组图的内容归纳成一句话。这样,及时引导学生超脱实例的具体性,实现必要的抽象概括。

这时就可以让学生自己思考、探索x的值的求法,然后在小组讨论后汇报。学生在陈述自己的想法时,不仅要说出自己是怎样推算的,还要请学生说出这样推算的理由。在这一过程中,要特别强调解方程的每一步得到的都是等式,而不是递等式。

教学中还要重视对学生书写的要求,初学时,可要求学生等号对齐。方程两边同时减去一个数的计算过程,开始练习时也要求学生写出来,待熟练之后再简写。无论是解方程还是检验,都要从一开始就强化书写规范,以发挥首次感知先入为主的强势效应,促进良好的书写习惯的形成。

最后引出方程的解和解方程的概念时,要强调:方程的解是一个数,而解方程是一个过程,帮助学生理解、区别这两个概念。

模式方法:观察――实验――讨论――交流――概括结论

作业设计:自主练习1-3题。

讨论要点

1、 教学时,要充分利用天平,让学生通过观察、实验、讨论、交流,帮助学生理解等式的基本性质一。

2、 教学时,要关注学生的算术思维向方程思维的.转变。

3、 在检验的问题上,要注重引导学生由算术法的验算向方程法的检验转变。

4、 教学时,要加大引领力度,充分发挥教师的作用。一要做好学生解决问题的思维方式的引领,进一步拓宽学生解决问题的渠道,提高学生解决问题的能力。二是对解方程以及列方程解决问题的思路、步骤及格式的引领。

活动总结

本次教研活动,使老师们更加清楚地了解学生已有的知识基础,较为准确地把握教学的重点和难点。设计较为实际的教学环节,降低学生学习的难度,同时也为教师在教学中围绕重点、突破难点指明了方向。

《方程》教案3

教学内容:

教科书第p4~ P5例5~例6、 P5试一试、练一练P6~P7练习一第6~8题

教学目标:

1.使学生进一步理解并掌握等式的性质,即在等式两边同时乘或除以同一个不等于0的数,结果仍然是等式。

2.使学生掌握利用相应的性质解一步计算的方程。

教学重点:

使学生进一步理解并掌握等式的性质,即在等式两边同时乘或除以同一个不等于0的数,结果仍然是等式。

教学难点:

使学生掌握利用相应的性质解一步计算的方程。

教学过程:

一、复习等式的性质

1.前一节课我们学习了等式的性质,谁还记得?

2.在一个等式两边同时加上或减去同一个数,所得结果仍然是等式。那同学们猜想一下,如果在一个等式两边同时乘或除以同一个数(除以一个数时0除外),所得结果还会是等式吗?

3.生自由猜想,指名说说自己的理由。

4.那么,下面我们就通过学习来验证一下我们的猜想。

二、教学例5

1.引导学生仔细观察P4例5图,并看图填空。

2.集体核对

3.通过这些图和算式,你有什么发现?

X=20 2x=202

3x 3x3=603

4.接下来,请大家在练习本上任意写一个等式。请你将这个等式两边同时乘同一个数,计算并观察一下,还是等式吗?再将这个等式两边同时除以同一个数,还是等式吗?能同时除以0吗?

5.通过刚才的活动,你又有什么发现?

6.引导学生初步总结等式的'性质(关于乘除的)乘或除以0行吗?

7.等式性质二

等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。

8.P5试一试

(1)指名读题

(2)你是根据什么来填写的?

三、教学例6

1.出示P5例6教学挂图。

指名读题,同时要求学生仔细观察例6图

2.长方形的面积怎样计算?

3.根据题意怎样列出方程?你是怎么想的?板书:40X=960

4.在计算时,方程两边都要除以几?为什么?

《方程》教案4

一.复习引入

提问:

以A(a,b)为圆心,半径为r的圆的标准方程是什么?

讨论并归纳回答。

复习巩固加强记忆。

二.新课讲授

1.思考:

我们先来判断两个具体的方程是否表示圆?

2.教师提问:

(1).是不是任何一个形如 的方程表示的曲线都是圆?

(2).如果不是那么在什么条件下表示圆?(提示:与圆的标准方程进行比较。)

综上所述,方程

表示的曲线不一定是圆,只有当 时,它表示的曲线才是圆, 我们把方程 ( )称为圆的一般方程

与一般的二元二次方程 比较

我们来看圆的一般方程的特点:(启发学生归纳)

学生根据已有的知识,经过配方,把方程化成标准形式,然后加以判断。

1.

2.

(让学生相互讨论后,由学生总结)

配方得总结

当 时,此方程表示以(- ,- )为圆 心, 为半径的圆;

当 时,此方程只有实数解 , ,即只表示一个点(- ,- );

当 时,此方程没有实数解,因而它不表示任何图形

①x2和y2的系数相同,不等于0.

②没有xy这样的二次项

使新知识建立在学生已有的知识上

设置问题:提出疑问,诱导学生主动思考,主动探究,合作交流使学生在积极的学习中解决问题,提高学生的教学思维能力,实现素质教育的目标,同时也培养了学生的情感、态度与价值观。

提高学生分析问题和解决问题的能力。

圆的标准方程

圆的一般方程

方程

圆心

半径

r

优点

几何特征明显

突出方程形式上的特点

问题:圆的标准方程与圆的一般方程各有什么特点?

采用类比法加深在研究问题中由简单到复杂,由特殊到一般的化归思想的认识。

练习1.判断下列方程是否表示圆? 如果是 ,请求出圆的圆心及半径.

三.例题讲解:

例1:求过三点A(0,0),B(1,1),C(4,2)的圆的方程,并求这个圆的半径长和圆心坐标。

分析:已知曲线类型,应采用待定系数法

使用待定系数法的圆的方程的一般步骤:

1.根据题意,选择标准方程或一般方程;

2.根据条件列出关于a、b、r或D、E、F的方程组;

3.解出a、b、r或D、E、F,代入标准方程或一般方程。

例2.已知线段 的端点 的坐标是 ,端点 在圆 上运动,求线段 中点 的'坐标 中 满足的关系?并说明该关系表示什么曲线?

练习2.求圆心在直线 上,并且经过原点和点(3,-1)的圆的方程

课堂小结

(1)任何一个圆的方程都可以写成 的形式,但是方程 的曲线不一定是圆;当 时,方程 称为圆的一般方程。

(2)圆的一般方程与圆的标准方程可以互相转化;熟练应用配方法求出圆心坐标和半径.

(3)用待定系数法求圆的方程时需要灵活选用方程形式.

想一想:可否先求圆心和半径,再得出圆的方程?

(提示学生结合图形,圆的弦的中垂线的交点为圆心 ,圆心到圆上一点的距离为半径)

加强待定系数法的应用

培养学生数形结合思想,进一步加强学生用代数方法研究几何问题的能力,体现了本节的知识与技能目标。

练习:P123:1、2、3

生:练习

4.1.2 圆的一般方程

课时设计 课堂实录

4.1.2 圆的一般方程

1第一学时 教学活动 活动1【活动】活动

四.教学过程

教学环节

教师活动

学生活动

设计意图

复习圆的定义及圆的标准方程特征

创设问题

设疑

类比

教师引导

《方程》教案5

教学目标:

1.使学生初步学会这一类简易方程的解法。

2.知道计算这类方程的.道理。

3.培养同学们分析问题、解决问题的能力。

教学重点:

掌握解这一类方程的解法。

教学难点:

理解这一类方程的算理。

教学过程:

一、复习引入

(一)解下列方程。

二、教学新授

(一)教学例5

例4.有东北虎和白虎16只,东北虎是白虎的七倍,东北虎和白虎各有多少只?

1.读题,理解题意。

2.教师提问:通过观察这幅图,你都知道了什么?

3.教师板书:

东北虎 白虎 总数

7x16

4.教师说明:这个式子中含有两个未知数,这就是今天要学习的解简易方程。

板书课题:解简易方程。

5.学生分组讨论计算方法。

7x 表示7个,x 表示1个,7x+x 一共是8个x ,也就是8x 。

教师提示:1个

6.教师小结

一个式子中如果含有两个的加减法,可以根据乘法分配律和式子所表示的意义,将前面的因数相加或相减,再乘,计算出结果。

7.练习

三、课堂小结

今天这节课你学到了哪些知识?解这类方程时要注意什么?

《方程》教案6

教学目的:

1、在解决实际问题的过程中,进一步巩固形如ax+b=c、ax-b=c的方程的解法,同时理解并掌握形如ax÷b=c的方程的解法,会列上述方程解决两步计算的实际问题。

2、提高分析数量关系的能力,培养学生思维的灵活性。

3、在积极参与数学活动的过程中,树立学好数学的信心。

教学重点、难点:

引导学生独立分析问题,找出题目中的等量关系。

教学对策:

在积极参与数学活动的过程中,树立学好数学的信心。

教学准备:

教学光盘

教学过程:

一、复习准备

1、解方程(练习一第6题的第1、3小题)

4x+12=50 2.3x-1.02=0.36

学生独立完成,再指名学生板演并讲评,集体订正。

二、尝试练习

师:刚才的两道题同学们完成得很好,这道题你们还能自己解决吗?试试看。

出示:30x÷2=360

学生独立尝试完成,全班交流。

指名学生说一说,解这个方程是第一步需要做什么?这样做依据了等式的什么性质?

三、巩固练习

1、出示练习一第7题。

(1)分析数量关系

提问:谁来说说三角形的面积公式是怎样的?根据学生回答板书:S=ah÷2。联系这个公式你能找出数量之间的相等关系吗?(生独立思考后在小组内交流)指名口答。你觉得在这些数量关系中,哪一个等量关系适合列方程?根据这个数量关系我们可以列出怎样的方程?板书:1.3x÷2=0.39。

第⑵题生独立思考并列出方程,在小组内说说自己的思考过程后全班交流。板书:3x+18=19.8。

(2)学生独立计算,并检验答案是否正确,全班核对。

小结:在一个实际问题中,可能会有几个不同的等量关系,我们应该选择合适的等量关系来列方程。

2、练习一第8题。

学生读题后可用自己喜欢的方法将与杨树和松树有关的信息分别列表整理(如列表,作标记等)

学生独立解决后再说说数量之间有怎样的数量关系,是根据什么样的数量关系列出的方程,最后核对解方程的过程。(提示学生可从得数的合理性来初步检验)

3、练习一第9题。

学生独立思考,指名分析数量关系,教师结合学生回答画出线段图帮助学生理解题意。

学生独立解方程再集体订正。

4、练习一第10题。

教师简单介绍相关天文知识后,学生独立解答,然后及时交流,教师及时讲评。

5、练习一第11题。

学生读题后教师提问:在本题中出现了两个问题,那么我们在写设句时要注意什么?(提示学生用不同的字母分别表示小亮出生时的身高和体重)

学生独立解决,集体核对。结合学生板演情况进行讲评,进一步规范学生的`书写格式。

6、练习一第12题。

提问:你能看懂这张发票上所提供的信息吗?数量间有怎样的等量关系呢

学生独立列方程解答,同桌同学互相检查,再集体订正。

7、练习一第13题。

学生阅读第13题,理解后独立解决问题,再交流。

教师再补充几题,如:98.6、212华氏度相当于多少摄氏度等。

四、全课小结

说一说你这一节课的学习收获及还有什么问题。

五、布置作业

完成配套习题。

教后反思:

本课时是一节练习课,练习目标有两个,一是通过练习让学生掌握形如ax+b=c和ax-b=c的方程的解法,会列方程解决两步计算的实际问题;二是借助一些对比练习,让学生感受方程的思想方法和价值。课前,我学习了高教导的“课前思考”,在今天的练习课中补充了两组题目,让学生进行对比练习。题目是这样的:(1)果园里有桃树60棵,比梨树的3倍少6棵,梨树有多少棵?(2)果园里有梨树60棵,比桃树的3倍少6棵,桃树有多少棵?课堂上,我先请学生分析每一题的数量关系,然后选择合适的方法来解答。学生们经过分析、比较,发现类似第1小题这样的题目适合用方程解,类似第2小题这样的题目适合用算术方法解。另一组补充的题目是:(1)王老师买了3个足球,付了200元,找回8元。每个足球多少元?(2)水果店运进5箱苹果,卖出56千克,还剩34千克。每箱苹果多少千克?对于这两题,我请学生认真分析数量关系后用自己喜欢的方法来解答,而且如果是列方程的话,试着列出不同的方程;如果是用算术方法解的可以列出不同的算式。课堂上学生思维活跃,在正确分析数量关系后列出了不同的方程或算式。

通过本节练习课,我想教师在教学中要更多地指导学生关注怎样从一个个具体的问题情境中分析数量之间的相等关系,关注怎样根据数量关系列出方程,从而在经历实际问题数学化的过程中,获得对用方程解决实际问题策略的体验,进一步丰富学生解决问题的策略,加深学生对方程作为一种重要的数学思想方法的理解。

《方程》教案7

【教学目标】

1.熟练掌握一元一次方程的解法;

2.进一步感受列方程的一般思路;

3.进一步培养学生的建模能力及创新能力.

4.通过观察、实践、讨论等活动经历从实际中抽象数学模型的过程.

【对话探索设计】

〖探索1

一项工程,甲要做12天才能做完.如果把总工作量看作1,

那么,根据工作效率=________÷________,

得甲一天的工作量(工作效率)为________.

他做3天的工作量是__________.

〖探索2

一项工程,甲单独做要6天,乙单独做要3天,两人合做要几天?

(1)你能估算出答案吗?

(2)试一试,怎样用直线型示意图寻求答案:

如图,线段AB表示总工作量1,怎样在线段AB上分别表示甲、乙一天的工作量?通过示意图,能够很直观地看出答案吗?

如图,用整个圆的面积表示全部工作量1,怎样用扇形的面积分别表示甲、乙两人一天的工作量?通过示意图,能够很直观地看出答案吗?与直线型示意图相比,你更乐意用哪一种图形分析?

〖探索3

一项工程,甲单独做要12天,乙单独做要18天,两人合做要几天?

解:把总工作量看作1,那么,

根据工作效率=________÷________,得

甲一天的工作量(工作效率)为______;乙一天的工作量为______;

设两人合做要x天,那么,

甲的总工作量为________;乙的`总工作量为________;

这工作由两个人完成,根据两人完成的工作量之和等于1,可列方程:

_____________________.解这个方程得________________.

答:_____________________.

把这道题的解法与小学时的算术解法进行比较,你有什么发现?

〖探索4

整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?(P92例5)

解:把总工作量看作1,那么,

根据工作效率=________÷________,得

人均效率(一个人1小时的工作量)为________.

设先安排x人工作4小时,那么,

这x个人4小时的工作量为_______________(可化简为_________).

显然,再增加2人后,参加工作的人数为x+2,这(x+2)个人工作8小时

的工作量为___________________(可化简为_________).

这工作分两段完成,根据两段完成的工作量等于1可列方程:

________________________.

解得_______.

答:_________________.

想一想:如果不是把总工作量看作是1,而是把一个人一小时的工作量看作是1,该如何解这道题?比较两种解法,你有什么感受?

教师本身要认真备课,要敢于质疑,要不失时机地培养学生独立思考的习惯.

〖作业

P93.习题3(3),(4);P94,8,9

《方程》教案8

设计说明

本节课针对方程的整理和复习分两个层次展开。第一个层次:复习用字母表示数的作用,使学生可以简明地表达数量关系,旨在举一反三,启发学生想到更多的实例。引导学生经历回顾和整理与方程有关知识的过程。会解决简单问题,感受方程在解决问题中的价值,培养初步的代数思想。第二个层次:请学生列方程并求出方程的解,目的是引导学生把有关方程的知识进行整理,对方程的概念、方程与等式的关系、什么叫解方程、解方程的依据(即等式的性质)、在解决问题时如何找等量关系、如何根据等量关系列出方程等知识进行回顾。帮助学生巩固基础,熟练掌握列方程解决实际问题的方法,同时进一步体会用方程解决问题的优越性。

课前准备

教师准备PPT课件

教学过程

⊙独立思考,构建知识网络

1、学习构建知识网络。

(1)归纳整理。

师:本学期我们学习了哪些有关方程的知识?请同学们先自行整理,再在组内交流。

(学生回忆整理,小组讨论交流,教师巡视指导)

(2)构建知识网络。

师:怎样展示相关的知识才能一目了然呢?现在,就让我们一起来完成知识网络的构建。

(引导学生有序地回顾已学的有关方程的知识,结合学生的回答,课件出示建立知识网络的过程)

设计意图:通过引导学生回顾、整理所学知识,使学生对所学的方程知识有一个比较系统的了解,并学会如何构建完整的知识网络。

2、展示构建的知识网络

方程

设计意图:对学过的.知识进行系统化的梳理,通过展示,使学生明确这一板块所呈现的内容,加深对所学知识的理解和掌握,形成完善的知识体系。

⊙复习,分项整理

1、复习用字母表示数。

(1)课件出示教材96页6、7题。

请学生先独立解决问题,然后说一说用字母表示数的方法。

小结:

①当数字与字母相乘时,去掉乘号,把数字写在字母的前面,也可以用点表示乘号,如4×a可以写作4

《方程》教案9

教学内容

根据面积与面积之间的关系建立一元二次方程的数学模型并解决这类问题.

教学目标

掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.

利用提问的方法复习几种特殊图形的面积公式来引入新课,解决新课中的问题.

重难点关键

1.重点:根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.

2.难点与关键:根据面积与面积之间的等量关系建立一元二次方程的数学模型.

教学过程

一、复习引入

1.直角三角形的面积公式是什么?一般三角形的面积公式是什么呢?

2.正方形的面积公式是什么呢?长方形的面积公式又是什么?

3.梯形的面积公式是什么?

4.菱形的面积公式是什么?

5.平行四边形的面积公式是什么?

6.圆的面积公式是什么?

二、探索新知

现在,我们根据刚才所复习的.面积公式来建立一些数学模型,解决一些实际问题.

例1.某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,上口宽比渠深多2m,渠底比渠深多0.4m.

(1)渠道的上口宽与渠底宽各是多少?

(2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完?

分析:因为渠深最小,为了便于计算,不妨设渠深为xm,则上口宽为x+2,渠底为x+0.4,那么,根据梯形的面积公式便可建模.

:(1)设渠深为xm

则渠底为(x+0.4)m,上口宽为(x+2)m

依题意,得: (x+2+x+0.4)x=1.6

整理,得:5x2+6x-8=0

解得:x1= =0.8m,x2=-2(舍)

∴上口宽为2.8m,渠底为1.2m.

(2) =25天

答:渠道的上口宽与渠底深各是2.8m和1.2m;需要25天才能挖完渠道.

例2.如图,要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm)?

老师点评:依据题意知:中央矩形的长宽之比等于封面的长宽之比=9:7,由此可以判定:上下边衬宽与左右边衬宽之比为9:7,设上、下边衬的宽均为9xcm,则左、右边衬的宽均为7xcm,依题意,得:中央矩形的长为(27-18x)cm,宽为(21-14x)cm.

《方程》教案10

一、素质教育目标

(一)知识教学点:

1.使学生了解一元二次方程及整式方程的意义;

2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.

(二)能力训练点:

1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;

2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.

(三)德育渗透点:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.

二、教学重点、难点

1.教学重点:一元二次方程的意义及一般形式.

2.教学难点:正确识别一般式中的“项”及“系数”.

三、教学步骤

(一)明确目标

1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.

2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的'边长?

教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.

板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.

(二)整体感知

通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.

(三)重点、难点的学习及目标完成过程

1.复习提问

(1)什么叫做方程?曾学过哪些方程?

(2)什么叫做一元一次方程?

《方程》教案11

教学目标:

1.学会根据定义判别分式方程与整式方程,了解分式方程增根产生的原因,掌握验根的方法。

2.掌握可化为一元一次方程或一元二次方程的分式方程的解法,会用去分母求方程的解。

教学重点:去分母法解可化为一元一次方程或一元二次方程的分式方程。验根的方法。

教学难点:验根的方法。分式方程增根产生的原因。

教学准备:小黑板。

教学过程:

复习引入:下列方程中哪些分母中含有未知数?哪些分母中不含有未知数?

(1);(2);(3);(4);

(5);(6);(7);(8)。

讲授新课:

1.由上述归纳出分式方程的概念:只含有分式或整式,且分母里含有未知数的方程叫做分式方程。方程两边都是整式的方程叫做整式方程。

2.讨论分式方程的解法:

(1)复习解方程时,怎样去分母?

(2)讲解例1:解方程(按课文讲解)

归纳:解分式方程的基本思想:

分式方程整式方程

(3)讲解例2:解方程(按课文讲解)

归纳:在去分母时,有时可能产生不适合原方程的根,我们把它叫做增根。因此解分式方程必须检验,常把求得得根代入原方程的'最简公分母,看它的值是否为0,若为0,则为增根,必须舍去;若不为0,则为原方程的根。

想一想:产生增根的原因是什么?

巩固练习:P1451t,2t。

课堂小结:什么叫做分式方程?

解分式方程时,为什么要检验?怎样检验?

布置作业:见作业本。

《方程》教案12

教学目标:

1、结合具体情境初步理解方程的意义,会用方程表示简单的等量关系。

2、在具体的活动中,体验和理解等式的性质,会用等式的性质解简单的方程。

3、能有方程解决一些简单的现实问题。在解决问题的过程中,感受方程与现实生活的紧密联系,形成应用意识。

教学重难点:

解简单方程和用方程解决问题既是本单元的重点也是难点。

教学过程:

一、板书课题

过渡语:今天我们来学习新的内容,简易方程。

二、出示目标

过渡语:这节课的学习目标是什么呢?请看:(出示学习目标,生齐读),有信心实现这节课的学习目标吗?

三、自学指导

(一)讲述:怎样实现这个目标呢?靠大家自学,怎样自学呢?请齐读自学指导。

(二)出示自学指导:认真看课本P5557的内容,

重点看图与文字,认真思考红点部分的问题。

5分钟后,比谁做的题正确率高。

师:自学竞赛开始,比谁看书认真,自学效果好!

四、先学

(一)过渡:下面自学开始,比谁自学后,能做对检测题。

(二)看一看。

生认真看书,师巡视并督促每个学生认真自学。(要保证学生看够5分钟,学生可以看看、想想,如果学生看完,可以复看。)

(三)做一做。

1、过渡:同学们看完了吗?看完的同学请举手?好,下面就来考考大家。要比谁做得又对又快,比谁字体端正,数位对齐,数字要写的大些,数字间要有一定的间距(要划出学生板演的'位置)

2、板演练习,请两名(最差的同学)来上讲台板演,其余同学做在练习本上。教师巡视,要找出学生中的错误,并板书。

五、后教:议一议

1、学生更正。

教师指导:发现错了的请举手!点名让学生上台更正。提示用红色粉笔改,哪个数字错了,先划一下,再在旁边改,不要擦去原来的。

2、讨论。(议一议)

(1)第一题哪几个错了,错在哪里,说出原因。

(2)第二题看图列方程,看做得对不对,不对,说出错因。

3、评议板书和正确率。

4、同桌交换互改,还要改例题中的题,有误订正,统计正确率及时表扬。

六、全课总结

谈话:我们今天学习了什么内容?你对什么印象最深?从中你明白了什么?

《方程》教案13

教学目标

1.使学生初步理解“方程”“方程的解”和“解方程”的含义.

2.初步掌握解简易方程的方法并会检验.

教学重点

使学生初步掌握解方程的方法和书写格式.

教学难点

帮助学生建立“方程”的概念,并会应用.

教学设计

一、复习准备

(一)口算下面各题.

30+( )=50 ( )×2=10

(二)列式.

1.一支钢笔 元,2支钢笔多少元?

2. 与4的和.

二、新授教学

(一)方程的意义

1.介绍天平

这是一架天平、可以用来称物品的重量.当天平的指针指在标尺中间时,表示天平平衡,即天平两端的重量相等.

2.引出方程

(1)出示图片:天平1

教师提问:这个天平平衡吗?说明了什么?谁会用等式表示?

(2)出示图片:天平2

教师提问:请同学们观察,天平平衡说明了什么?怎样用式子表示?

教师板书:20+?=100

教师说明:这个未知数“?”,如果用 来表示就可以写成20+ =100.

(3)出示图片:篮球

教师提问:这幅图是什么意思?怎样用含有未知数的等式表示?

教师板书:

3.方程的意义.

教师提问:观察上面三个等式回答问题.这三个等式有什么相同点和不同点?

相同点:都是相等的式子.

不同点:第一个等式不含有未知数,第二个和第三个等式含有未知数.

教师板书:象这种含有未知数的等式,叫方程.

教师强调:含有未知数、等式

4.思考:方程和等式之间到底是什么关系呢?

(1)出示图片:等式与方程

(2)小结:所有的方程都是等式,但是等式不一定都是方程.

(二)教学例1

1.方程的解

教师提问:在 中, 等于多少时方程左边和右边相等?

在 中, 等于多少时方程的左边和右边相等?

教师说明:使方程左右两边相等的未知数的值,叫做方程的解.

如: 是方程 的解

是方程 的解

2.解方程

教师板书:求方程的解的过程叫做解方程.

3.教学例1

例1.解方程 -8=16

(1)教师提问:解方程先写什么?根据什么计算?

(2)教师板书:

解:根据被减数等于减数加差

(3)怎样检查解方程是否正确?

检验:把 代入原方程,

左边 ,右边

左边=右边

所以 是原方程的解.

4.讨论:“方程的解”和“解方程”有什么区别?

三、课堂小结

今天你学到了哪些知识?什么叫方程?方程的解和解方程有什么区别?

四、巩固练习

(一)填空

1.含有未知数的( )叫做方程.

2.使方程左右两边相等的( ),叫做方程的解.

3.求方程的解的( )叫解方程.

4.下面的式了中是等式的有( );

是方程的有( ).

(二)判断,对的在括号里打√,错的打×.

1.等式都是方程.( )

2.方程都是等式.( )

3. 是方程 的解.( )

4. 也是方程.( )

(三)选择正确答案填在括号内.

1. 的解是( )

① ②

2. 的解是( )

① ②

3. 这个式子是( )

①是方程 ②是等式 ③既是方程又是等式

4. 是方程( )的解

① ②

五、课后作业

(一)解下列方程.(第一行两小题要写出检验过程.)

(二)用方程表示下面的等量关系,并求出方程的解.

1. 加上35等于91.

2. 的3倍等于57.

3. 减3的差是6.

4.7。8除以 等于1。3.

六、板书设计

解简易方程

含有未知数的等式叫做方程.使方程左右两边相等的未知数的'值,叫做方程的解.

求方程的解的过程叫做解方程.

例1 解方程

解:根据被减数等于减数加差

检验:把 代入原方程,

左边 ,

右边 ,

所以 是原方程的解.

教案点评:

该教学设计既重视过程,又重视结论;既重视知识的教学,又重视能力的培养。教师采取边讲边练、讲练结合的形式,为学生提供了更多的参与学习的机会。

探究活动

不说也知道

活动目的

1.通过游戏,激发学生学习数学的兴趣.

2.培养学生用数学知识解决实际问题的能力.

活动过程

1.教师表演数学魔术.

数学魔术:学生任意想好一个数,然后按照教师的要求进行运算:把想好的数加上2,乘上3,减去6,再减去原来所想的数.把最后的结果告诉教师,教师可以马上知道学生原来所想的数.

2.学生分小组探讨其中的秘密.

魔术揭密:可以假设学生所想的数为 ,按照教师的要求就是加上2( +2),乘上3

(3 +6),减去6(3 ),再减去原来所想的数(2 ).也就是说最后的计算结果是原来所想数的2倍.

3.学生自己设计数学魔术.

4.分小组进行表演.

《方程》教案14

1。教学目标

(1)知识目标: 1。在平面直角坐标系中,探索并掌握圆的标准方程;

2。会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程。

(2)能力目标: 1。进一步培养学生用解析法研究几何问题的能力;

2。使学生加深对数形结合思想和待定系数法的理解;

3。增强学生用数学的意识。

(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣。

2。教学重点。难点

(1)教学重点:圆的标准方程的求法及其应用。

(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰

当的坐标系解决与圆有关的实际问题。

3。教学过程

(一)创设情境(启迪思维)

问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2。7m,高为3m的货车能不能驶入这个隧道?

[引导] 画图建系

[学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)

解:以某一截面半圆的圆心为坐标原点,半圆的.直径AB所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0)

将x=2。7代入,得 。

即在离隧道中心线2。7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

(二)深入探究(获得新知)

问题二:1。根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程?

答:x2 y2=r2

2。如果圆心在 ,半径为 时又如何呢?

[学生活动] 探究圆的方程。

[教师预设] 方法一:坐标法

如图,设M(x,y)是圆上任意一点,根据定义点M到圆心C的距离等于r,所以圆C就是集合P={MMC=r}

由两点间的距离公式,点M适合的条件可表示为 ①

把①式两边平方,得(x?a)2 (y?b)2=r2

方法二:图形变换法

方法三:向量平移法

(三)应用举例(巩固提高)

《方程》教案15

一、教材分析

本章将在上章学习了直线与方程的基础上,学习在平面直角坐标系中建立圆的代数方程,运用代数方法研究直线与圆,圆与圆的位置关系,了解空间直角坐标系,在这个过程中进一步体会数形结合的思想,形成用代数方法解决几何问题的能力。

二、教学目标

1、 知识目标:使学生掌握圆的标准方程并依据不同条件求得圆的方程。

2、 能力目标:

(1)使学生初步熟悉圆的标准方程的用途和用法。

(2)体会数形结合思想,形成代数方法处理几何问题能力(3)培养学生观察、比较、分析、概括的思维能力。

三、重点、难点、疑点及解决办法

1、重点:圆的标准方程的推导过程和圆的标准方程特点的明确。

2、难点:圆的方程的应用。

3、解决办法 充分利用课本提供的2个例题,通过例题的解决使学生初步熟悉圆的标准方程的用途和用法。

四、学法

在课前必须先做好充分的预习,让学生带着疑问听课,以提高听课效率。采取学生共同探究问题的学习方法。

五、教法

先让学生带着问题预习课文,对圆的方程有个初步的认识,在教学过程中,主要采用启发性原则,发挥学生的思维能力、空间想象能力。在教学中,还不时补充练习题,以巩固学生对新知识的理解,并紧紧与考试相结合。

六、教学步骤

(一)导入新课 首先让学生回顾上一章的直线的方程是怎么样求出的。

(二)讲授新课

1、新知识学习在学生回顾确定直线的要素——两点(或者一点和斜率)确定一条直线的基础上,回顾确定圆的几何要素——圆心位置与半径大小,即圆是这样的一个点的集合在平面直角坐标系中,圆心 可以用坐标 表示出来,半径长 是圆上任意一点与圆心的距离,根据两点间的距离公式,得到圆上任意一点 的坐标 满足的关系式。经过化简,得到圆的标准方程

2、知识巩固

学生口答下面问题

1、求下列各圆的标准方程。

① 圆心坐标为(-4,-3)半径长度为6;

② 圆心坐标为(2,5)半径长度为3;2、求下列各圆的圆心坐标和半径。

3、知识的延伸根据“曲线与方程”的意义可知,坐标满足方程的点在曲线上,坐标不满足方程的'点不在曲线上,为了使学生体验曲线和方程的思想,加深对圆的标准方程的理解,教科书配置了例1。

例1要求首先根据坐标与半径大小写出圆的标准方程,然后给一个点,判断该点与圆的关系,这里体现了坐标法的思想,根据圆的坐标及半径写方程——从几何到代数;根据坐标满足方程来看在不在圆上——从代数到几何。

(三)知识的运用

例2给出不在同一直线上的三点,可以画出一个三角形,三角形有唯一的外接圆,因此可以求出他的标准方程。由于圆的标准方程含有三个参数 , ,因此必须具备三个独立条件才能确定一个圆。引导学生找出求三个参数的方法,让学生初步体验用“待定系数法”求曲线方程这一数学方法的使用过程

(四)小结一、知识概括

1、 圆心为 ,半径长度为 的圆的标准方程为

2、 判断给出一个点,这个点与圆什么关系。

3、 怎样建立一个坐标系,然后求出圆的标准方程。

4、思想方法

(1)建立平面直角坐标系,将曲线用方程来表示,然后用方程来研究曲线的性质,这是解析几何研究平面图形的基本思路,本节课的学习对于研究其他圆锥曲线有示范作用。

(2)曲线与方程之间对立与统一的关系正是“对立统一”的哲学观点在教学中的体现。

五、布置作业(第127页2、3、4题)

相关阅读

栏目精选

其他栏目

毕业论文

教学教案

教学计划

学习总结

实践心得

教学反思